
The future of Bitshares plugins

By @oxarbitrage

2

Stability, performance and speed

●Bitshares is stable as it executes only a pre

defined set of operations(smart contracts)

●Bitshares is pretty safe from malicious input by

the same reason.

●Bitshares is fast as consensus data is stored in

RAM.

●Consensus changes are only applied once or

twice a year, business and developers need

features that can be exposed faster.

3

Bitshares core Software

Bitshares core

Block producers API nodes

BP sign blocks by plugin
- Bitshares UI
- Command Line Wallet
- Python(python-bitshares, upticks, explorer
- bitsharesjs

4

Business software model

Business

3rd party

API Bitshares
blockchain

Wallet

- Integrated API or consensus rules will never have all calls all business will require(performance issues, storage issues, BSI

5

Plugin nodes

Bitshares core

Block producers API nodes Plugin nodes

6

Plugin nodes

Plugin Node

ElasticSearch node HFT node Smart contract node

Bitshares Core

7

Plugin model

business

Immediate access to DB

Create and sign any
operation

Process blockchain data

Store Information

Send data to external

Create and expose new
API calls

Run third party C++
libraries

Bitshares
blockchain

C++ Skills are needed to build plugins.

plugin

8

Current state of plugins

Debug

Export

Block generation

API

Debug Witness

Elasticsearch

Witness

Grouped Orders

Business Delayed node

ES Objects

Account history

Snapshot

Market history

9 plugins total.

9

Can we do more?

10

Plugin hooks

Sidechain: on each applied block do something

B 1

plugin

Bitshares core
Database

plugin

B 1

Have all blockchain data available on each signal event.

11

Common plugin signals

●Connect to each applied block.

●Connect to each new created object.

●Connect to each modified object.

●Connect to any deleted object.

●Combinations.

●Create new signals.

12

Connect to each block

void my_plugin::plugin_initialize(const boost::program_options::variables_map& options)

database().applied_block.connect([&](const signed_block& b) {
my->onBlock(b);

});
}

void my_plugin_impl::onBlock(const signed_block& b)
{

graphene::chain::database& db = database(); // call the database
auto block_num = b.block_num(); // get current block number
ilog("Block number: ${b}", ("b", block_num)); // print block number

}

●Hello world of plugins.

Block number: 1
Block number: 2
Block number: 3
Block number: 4
...

13

Lets see some work

done.

14

Account History plugin

Simplified account history plugin functionality

Block plugin

Create
account
history
objects

Process
data

On each applied blockCall plugin update_account_histories Process operation inside applied blockData is now available throw history API calls:
- get_account_history
- get_relative_account_history
- get_account_history_operations
- etc

15

Snapshot Plugin

Send all objects to JSON at selected block

plugin
Loop throw
all objects

Plugin is
loaded

On user selected block or timeProcess objects Export current blockchain to JSON

16

Elasticsearch Plugin

Starting to integrate 3rd party technology

Block plugin
Process

data

On each applied blockCall plugin
update_account_histories

Process operation coming from blocks
Data is now available in elasticsearch

Elasticsearch plugin allows to fast search operation history and decrease
hardware requirements to run a full full node.

17

Elasticsearch Objects

Persistence and easy query

plugin
Process

data

On each created/modified/removed objectCall plugin
Process object data

Specified object data is now available in elasticsearch

On object

The ES Objects plugin can capture changes in objects that otherwise are lost, for example allow to query how much was my bala

18

Lets see some work

in progress

19

ZeroMQ Plugin

Send data to socket

Block plugin
Process

data

On each applied blockCall plugin Process operation coming from blocksData is now available in tcp socket

Plugin acts a server, client will be listening and receiving operations from the plugin.

20

High Frequency trader

Creating and signing operations from plugin

plugin

Create and
store

rules and
levels

On each object
Execute

operations

Analyze
rules

- Plugin must have private key of the trader.
- When operations are executed from inside plugins the normal fees are applied to accounts involved.

21

Stoploss Plugin

●A possible set of rules will be:
If price of BTS vs CNY drops below my predefined level:

Buy CNY and stop loss.

If price of BTS vs CNY is above my predefined level:

Buy CNY and take profits.

22

Lua Scripting and Virtual Machine

Lua: execute user loaded simple scripts

Block plugin
Loop loaded

scripts
Execute

operations

C++ skills are NOT needed to build Lua scripts.

Scripts can be loaded throw cli_wallet or UI.A Lua VM is created with each script on
each applied block.
Operations are executed as they are
found inside script.

transferDate = "2019-02-01"

user_account = "bob"
block_time = Bitshares:getCurrentBlockTime()
if block_time > transferDate then

Bitshares:transfer("my-account", user_account, "100", "BTS")

Bitshares:quit()

end

23

Plugins as a service

I want to offer my clients the possibility to run Lua scripts

Node with Lua plugin

- Client create lua script and upload to Lua plugin node by cli_wallet(or UI).
- Script will be executed every block until quit() is found on script or if script expires.
- Client need to send private key to Lua plugin node at loading script.

24

The private key issue

●BSIP 40: Custom Authorities will reduce the

impact of the private key stored in plugin node.

●Some specific use cases can be done by

executing proposals behind the scene. This

removes the need to send any key to plugin

server.

●A HF with 1 or more new operations can be

added to consensus.

25

Other issues

●Centralization: If plugin node gets down for any

reason operations will not be executed.

Possible solution: Distribute plugin nodes.

●Resources: Plugin without making any

operation can consume too much computation

power in the node. Possible solution: Get the

cycles each script consumes on every run and

charge for running in a GAS style.

