
BitShares Core & Network 
Performance

Past, Present and (possible) Future



I. The Past

 „100.000 transactions per second“ (2015)

 Real-life stress test (2017)



100k TX/s

 Claimed in a blog post in June 2015

https://bitshares.org/blog/2015/06/08/measuring-
performance/

 Applies to internal database operations only

 No networking involved

 No crypto operations involved

 „Simple“ operations, i. e. no market order matching 
etc.

 Insert demo



3.3k TX/s

 Real-life stress test on 2017-03-15 15:00 UTC
https://bitsharestalk.org/index.php?topic=23829.0

 Global-scale distributed test network with 15 witness 
nodes

 90 minute test with 3-second blocks

 Max 60k ops / 10k tx per block -> 20k ops/s, 3.3k 
tx/s

 Insert demo



II. The Present

 6.1M ops/day

 Chain state after ~35 months

 Replay time



6.1M ops/day

 Peak operations per day on BitShares mainnet

 70 ops/s sustained – 10 times peak perfomance of 
BTC

 Mostly market operations due to bot activity

 Source: http://blocktivity.info



Chain state after ~35 months

 BitShares2 1st block at 2015-10-13 14:12 UTC

 30 million blocks at 2018-08-28 06:07 UTC

 ~1 million registered accounts

 ~13.5 million transactions

 ~450 million operations



Replay time

 „Replay“ means re-apply all transactions in blockchain 
on top of genesis state

 Sometimes required after software upgrade

 Time with latest consensus-upgrade release 
(2.0.180612): 3.5h

 Various code optimizations (thanks @abitmore!)

 Time with latest release (2.0.180823): 1.25h



III. The Future

 Problem: Replay time

 Problem: Database

 Idea: Parallel crypto

 Idea: Fees

 Idea: Reorganization

 Idea: Separation



Problem: Replay time

 1M ops/day -> +10s/day replay time at best

 New chain logic -> prolonged replay time

 More complicated market logic -> prolonged replay 
time

 Replay becomes impossible when chain activity maxes 
out



Problem: Database

 Database volume of full API node

 Offloading history into ES helps

 Can offload only static data, not accounts, 
orderbooks etc.

 Single-threaded execution model

 Blockchain logic requires sequential application of 
operations



Idea: Parallel Crypto

 Current bottleneck in live stress test is crypto

 Crypto operations can be parallelized!

 Requires some restructuring between P2P, API and DB

 Ongoing work, e. g. 
https://github.com/bitshares/bitshares-core/pull/1251

 Doesn't help for replay



Idea: Fees

 Handling fees consumes DB „bandwidth“

 Fees are usually in BTS

 BTS balance objects must be changed often

 Hinders parallelization („lock contention“)

 Possible solution: zero-cost rate-limited transactions, 
as in STEEM



Idea: Reorganize transaction 
processing

 Re-define execution order of operations within a block

 Separate interdependent operations

 Carry out independent operations in parallel, in map-
reduce fashion

 Helps for live network and replay (if it works)

 Speculative!



Idea: Separate Processes, pt 1

 witness_node combines several functions:

 Apply incoming blocks

 Apply incoming transactions for validation

 Generate blocks (witness only)

 Respond to API requests

 All of these interfere with each other!



Idea: Separate Processes, pt 2

 Use linux CoW memory pages

 Main process applies incoming blocks, then forks:

 1 process for handling API requests:

read only, massively parallel, guaranteed read-
consistency

 1 process for validating incoming tx

 1 process for generating blocks (witness only)

 Speculative!!



 (C) 2018 Peter Conrad <conrad@quisquis.de>

 This work is licensed under the Creative Commons 
Attribution-NoDerivatives 4.0 International License. To 
view a copy of this license, visit 
http://creativecommons.org/licenses/by-nd/4.0/ or 
send a letter to Creative Commons, PO Box 1866, 
Mountain View, CA 94042, USA.

mailto:conrad@quisquis.de

